Topic 13 -Euler Method

$$y' = f(x,y)$$

 $y(x_{o}) = y_{o}$

The idea goes like this: Suppose you
know that a function y satisfies

$$y(a) = b$$
 and $y'(a) = m$.
Then suppose you want to approximate
 $y(ath)$ where $h > o$ is a small
number.
If you
go h distance
along the
x-axis
and follow
the tangent
line then
the y-Value
Will be
 $y = b thm$.
 $= b thy'(a)$
You just iterate this over
and Over to get your approximation.

How to do this?
Suppose we want to approximate
a solution to

$$y' = f(x,y)$$
 this tells us the
slope of the solution
 $y(x_0) = y_0$ this gives vs an actual
Value of a solution
at some starting
point xo
Von will get.
Our starting point (x_0,y_0) is given above.
Set
 $x_1 = x_0 + h$
 $y_1 = y_0 + h$, $f(x_0,y_0)$
this siepe
 y' at (x_0,y_0)
 x_0 this is
the siepe
 y' at (x_0,y_0)
 x_0 this is
the siepe
 y' at (x_0,y_0)
 x_0 this is
the siepe
 y' at (x_0,y_0)
 y' at (x_0,y_0)

Next point.

Set

$$\chi_2 = \chi_1 + h$$

 $y_2 = y_1 + hf(\chi_1, y_1)$
So, $(\chi_{2,1}, y_2)$
gives an approximation
to the solution
at χ_2 of y_2 .
Keep iterating
this idea to
get Euler's method.
Euler's Method
Suppose we want to approximate a solution to
 $y' = f(\chi_1, y)$, $y(\chi_0) = y_0$
Pick some $h > 0$.
We are given the starting point (χ_0, y_0) above.
Then set
 $\chi_n = \chi_{n-1} + h$
 $y_n = y_{n-1} + h \cdot f(\chi_{n-1}, y_{n-1})$
for $n \ge 1$

Consider the initial-value problem y-xy=0 y'= xy y(0) = 1 ∉ $e^{\frac{1}{2}x^2}y - xe^{\frac{1}{2}x^2}y = 0$ $\left(ye^{-\frac{1}{2}x^{2}}\right)'=0$ $ye^{\frac{1}{2}\chi^2} = C$ From earlier $y = Ce^{\frac{1}{2}x^2}$ methods we know $\mathcal{A}(\circ)=1 \rightarrow \mathbb{C}=1$ the solution is $y = e^{\frac{1}{2}x^2}$ $y = e^{\pm x^2}$ Let's pretend that We don't know this. Let's try to approximate the solution when $0 \leq x \leq 1$. ofvi I=x=0 First let's divide up Smuller segments. Let $h = 0.25 = \frac{1-0}{4}$. 0 0,25 0.5 0,75 1 Using h we can h=0.25

Ex:

break
$$0 \le x \le 1$$
 into 4 equally sized
Segments We will approximate the
solution to $y' = xy$, $y(b) = 1$ at these
four points.
The formula $y' = xy$ tells us the slope
of the tangent line of the solution
at any point. We can use this to
at any point. We can use this to
approximate the solution $y = e^{2x^2}$ without
knowing the solution.
Use the initial-value $y(b] = 1$
to get the first point in our approximation.
Let $x_0 = 0$, $y_0 = 1$.
The tangent line
has slope
 $y' = x_0 y_0 = 0$
at this point.
Move $h = 0.25$
along the tangent
line to get the
 $next approximate$
 $y' = x_0 y_0 = 0$
 $y' = y_0 y_0 = 0$
 $y' = y_0$

$$p_{eint} (x_{1}, y_{1}). \text{ This is:} \\ x_{1} = x_{0} + h = 0 + 0.25 = 0.25 \\ y_{1} = y_{0} + h \cdot y'(x_{0}, y_{0}) \\ x_{0} y_{0} \\ = 1 + 0.25(v)(1) \\ = 1$$

Keep going...

$$X_{3} = X_{2} + h = 0.5 + 0.25 = 0.75$$

 $Y_{3} = Y_{2} + h Y'(x_{2},y_{2})$
 $= 1.0625 \quad y' = 0.53(25)$
 $+ 0.25(0.5)(1.0625)$
 $= 1.19531$
 $(0,5)(1.0625)$
 $= 1.19531$
 $(0,5)(1.0625)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,2$

Sv	mmary		uctual solution $y = e^{\frac{1}{2}x^2}$
n	Xn	y _n	evaluated at Xn
0	0		
	0,25		1,03174
2	0,5	1,0625	1,13315
3	0,75	1,19531	1,32478
4		1,41943	1.64872

Ex: Approximate a solution to

$$y' = xy$$

 $y(0) = 1$
On the interval $0 \le x \le 0.5$ using $h = 0.1$
The Euler equations here are
 $x_n = x_{n-1} + h$
 $y_n = y_{n-1} + h \cdot f(x_{n-1}, y_{n-1})$
 $x_n = x_{n-1} + 0.1$
 $y_n = y_{n-1} + (0.1) \times y_{n-1} + 0.1$
 $x_0 = 0$
 $y_0 = 1$
For $n = 1$:
 $x_1 = x_0 + h \cdot x_0 \cdot y_0$
 $= 1 + (0.1)(0)(1)$
 $= 1$

$$\begin{aligned} x_{2} &= x_{1} + h = 0.(+0.) = 0.2 \\ y_{2} &= y_{1} + h \cdot x_{1} \cdot y_{1} \\ &= (+(0.1)(0.1)(0.1)(1) \\ &= 1.01 \end{aligned}$$

$$X_{3} = X_{2} + h = 0.2 + 0.1 = 0.3$$

$$Y_{3} = Y_{2} + h \cdot X_{2} \cdot Y_{2}$$

$$= 1.01 + (0.1)(0.2)(1.01)$$

$$= 1.0302$$

$$X_{3} = 0.3$$

$$Y_{3} = 1.0302$$

$$X_{4} = X_{3} + h = 0.4$$

$$Y_{4} = Y_{3} + h \times_{3} Y_{3}$$

$$= 1.0302 + (0.1)(0.3)(1.0302)$$

$$= 1.061106$$

$$\begin{aligned} x_{5} &= x_{4} + h = 0.5 \\ y_{5} &= y_{4} + h x_{4} y_{4} \\ &= 1.061106 + (0.1)(0.4)(1.061106) \\ &= 1.10355024 \end{aligned}$$

X	^	ЧЧ	actual value of solution $e^{V_2 \times^2}$ at $\times n$	approximation we initially did with h=0.25	
0)	1	[
D.	, [l	1,00501		
0.	2	1.01	1.0202		h=0.25
0,	3	(,0302	1.04603		
0,9	Ч).061\06	1.08329		
0.	5	1,10355024	1,13315	1,0625	